The effect of a wound care solution containing polyhexanide and betaine on bacterial counts: results of an in vitro study .
نویسندگان
چکیده
Polyhexanide and betaine topical solution is used in the management of infected wounds as a cleaning agent. An in vitro study was conducted to examine the antimicrobial effects of a solution containing 0.1% of the antimicrobial agent polyhexanide and 0.1% of the surfactant betaine. Three batches of each product were tested, and culture results of 13 microorganisms were evaluated after 7, 14, and 28 days using USP <51> methodology. Growth reduction was identical at each day following exposure to the solution in all micro-organisms except Aspergillus brasiliensis. A range of 5.3-log to 5.8-log reduction was seen for the following micro-organisms: Staphylococcus epidermidis, Pseudomonas aeruginosa, Serratia marcescens, Candida albicans, S. aureus, vancomycin-resistant Enterococcus faecalis, Proteus mirabilis, Escherichia coli, methicillin-resistant S. aureus, Acinetobacter baumannii, Enterobacter cloacae, and E. faecalis. For A. brasiliensis, reductions were 2.1-log, 2.3-log and 2.8-log at 7, 14, and 28 days, respectively. The results of this study indicate a 4+ log inhibition of activity in 12 of 13 micro-organisms exposed to the solution. Research to elucidate the potential clinical effects of these observations is needed.
منابع مشابه
Comparison of the effects of extremely low-frequency Electromagnetic field and Betaine on in vitro osteogenic differentiation of human adipose tissue derived-mesenchymal stem cells
Background & Aim: Extremely low-frequency electromagnetic field (ELF-EMF) and betaine are safe factors in bone fracture repair. This study aimed to compare the effects of these two stimuli on osteogenic differentiation of human adipose stem cells (hADSCs). Methods: After obtaining written informed consent, cells were extracted from abdominal adipose tissue and then cultured in vitro until the ...
متن کاملThe effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice
Objective (s): Bacterial infection is an important cause of delayed wound healing. Staphylococcus aureus (S. aureus) is the main agent causing these infections. Zinc Oxide (ZnO) nanoparticles have antibacterial activity and also accelerate the wound healing process. The aim of the present study is to evaluate the effect of ZnO nanoparticles on bacterial load reduction of the wound infection. M...
متن کاملEffects of Cream Containing Rhamnolipid Microbial Surfactants from Pseudomonas aeruginosa MR01 on Growth Inhibition of Staphylococcus aureus
Background and purpose: Dramatic increase in antibiotic-resistant bacteria highlights the need for new compounds with more effective antibacterial properties and biotechnology could be useful in producing these metabolites. The present study aimed at investigating the effects of rhamnolipid microbial surfactants in a cream-based formulation on growth inhibition of Staphylococcus aureus using in...
متن کاملIn-vitro release pharmacokinetics of amikacin, teicoplanin and polyhexanide in a platelet rich fibrin—layer (PRF)—a laboratory evaluation of a modern, autologous wound treatment
OBJECTIVES Platelet rich fibrin (PRF) is an autologous fibrin glue, produced from patients' blood, which, besides intraoperative use, has applications in the treatment of infected wounds. The combination with antimicrobial agents results in a prolonged antibacterial effect allowing for wound dressing change intervals of seven days even in infected wounds. The aim of this study was to evaluate r...
متن کاملRecognition of Betaine as an Inhibitor of Lipopolysaccharide-Induced Nitric Oxide Production in Activated Microglial Cells
Background: Neuroinflammation, as a major outcome of microglia activation, is an important factor for progression of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. Microglial cells, as the first-line defense in the central nervous system, act as a source of neurotoxic factors such as nitric oxide (NO), a free radical which is involved in neuronal cell death. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ostomy/wound management
دوره 58 10 شماره
صفحات -
تاریخ انتشار 2012